SNAP18 MODULE CUTTING DATA

	Description	Tensile str. RM (MPa)	Hardness (HB)	Hardn. (HRC)	Cutting data ¹⁾		
					Vc	fz	B *
P0	Low-carbon steel, long-chipping, C <0.25%	<530	<125	-	40-60	0.05-0.1	A
P1	Low-carbon steel, short-chipping, C <0.25%	<530	<125	-	40-60	0.05-0.1	A
P2	Steel with carbon content C >0.25%	>530	<220	<25	40-60	0.05-0.1	A
P3	Alloy steel and tool steel, C >0.25%	600-850	<330	<35	30-50	0.05-0.1	A
P4	Alloy steel and tool steel, C >0.25%	850-1400	340-450	35–48	30-50	0.05-0.1	A
P5	Ferritic, martensitic and stainless PH steel	600-900	<330	<35	20–40	0.05-0.08	A
P6	High-strength ferritic, martensitic and PH stainless steel	900–1350	350-450	35–48	2040	0.05-0.08	A
M1	Austenitic stainless steel	<600	130-200	-	10-20	0.05-0.08	A
M2	High-strength austenitic stainless steel	600-800	150-230	<25	10-20	0.05-0.08	A
M3	Duplex stainless steel	<800	135–275	<30	10-20	0.05-0.08	A
K1	Cast iron	125-500	120-290	<32	50-90	0.05-0.1	A
K2	Ductile cast iron with up to medium strength	<600	130–260	<28	40-60	0.05-0.1	A
K3	High-strength cast iron and bainitic cast iron	>600	180-350	<43	40–60	0.05-0.1	A
N1	Wrought aluminium alloys	-	-	-	70–120	0.05-0.2	D
N2	Aluminium alloys with low Si content	-	-	-	70–120	0.05-0.2	D
N3	Aluminium alloys with high Si content	-	-	-	70–120	0.05-0.2	D
N4	Copper, brass and zinc base	-	-	-	30–70	0.05-0.15	D
S1	Iron-based heat-resistant alloys	500-1200	160–260	25–48	8–15	0.02-0.06	A
S2	Cobalt-based heat-resistant alloys	1000–1450	250–450	25–48	8-15	0.02-0.06	A
S3	Nickel-based heat-resistant alloys	600-1700	160-450	<48	8-15	0.02-0.06	A
S4	Titanium and titanium alloys	900–1600	300-400	33–48	8–15	0.02-0.06	A

 $^{\scriptscriptstyle 1)}$ Higher cutting feed rates can be achieved by installing two or more modules.

The cutting values for drilling are generally higher than those for chamfering. With the installation of at least two SNAP 18 Modules, the chamfering performance can be optimised to such an extent that little or no compromise needs to be made in terms of processing speed.